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Abstract. A knowledge of the radial distributions of quarks inside hadrons could lead to a better under-
standing of the QCD description of these hadrons and possibly suggest forms for phenomenological models.
As a step in this direction, in an earlier work, the charge (vector) and matter (scalar) radial distributions
of heavy-light mesons were measured in the quenched approximation on a 163 × 24 lattice with a lattice
spacing of a ≈ 0.17 fm, and a hopping parameter corresponding to a light quark mass about that of the
strange quark. Here several improvements are now made: 1) The configurations are generated using dy-
namical fermions with a ≈ 0.14 fm; 2) Many more gauge configurations are included; 3) The distributions
at many off-axis, in addition to on-axis, points are measured; 4) The data analysis is much more complete.
In particular, distributions involving excited states are extracted. The exponential decay of the charge
and matter distributions can be described by mesons of mass 0.9±0.1 and 1.5±0.1 GeV respectively –
values that are consistent with those of vector and scalar qq̄-states calculated directly with the same lattice
parameters.

1 Introduction

In few- and many-body systems radial and momentum dis-
tributions often play an important role. For atomic and
nuclear systems these distributions are, in many cases,
calculated from a differential equation using an effective
interparticle potential, where both the equation and po-
tential have some justification. However, for quark-gluon
systems this approach is thought not to be applicable,
even though the basic interaction – that of QCD – is exact
and well known. Therefore, if – for example – transition
rates between states in a heavy-light meson (Qq̄) are calcu-
lated, then the necessary radial wavefunctions are simply
taken to have some convenient form, as in [1], or are calcu-
lated with a differential equation and interquark interac-
tion that are not well justified. It is an unusual situation,
where one of the most fundamental systems, the hydrogen
atom of quark physics, has interparticle correlations that
are little understood.

In an attempt to remedy partially this problem, the au-
thors in [2] measured the charge and matter distributions
in a heavy-light meson. More explicitly, the heavy-light
meson was simplified to being an infinitely heavy quark
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(Q) and an antiquark (q̄) with a mass approximately equal
to that of the strange quark. The physical meson nearest
to this idealised meson is the Bs(5.37 GeV). Reference
[2] was essentially a pilot calculation to test the feasibil-
ity of such distribution measurements and its successful
outcome encouraged the authors to continue this line of
research. In this paper, the same correlations are measured
but with several major improvements compared with the
earlier study:

1) The gauge configurations are now calculated using two
flavors of dynamical fermion and not in the quenched ap-
proximation as before. The actual parameters are those
in [3], namely, β = 5.2, CSW = 1.76 for the clover ac-
tion, a ≈ 0.14 fm for the lattice spacing, κ = 0.1395
for the hopping parameter and MPS/MV = 0.72 for the
pseudoscalar meson/vector meson mass ratio, which corre-
sponds to a quark mass somewhat heavier than the strange
quark mass – MPS/MV = 0.682 being the ratio corre-
sponding to exactly the strange quark mass [4]. In com-
parison, the parameters for the quenched work of [2] were
β = 5.7, CSW = 1.57, a ≈ 0.17 fm, κ = 0.14077 and
MPS/MV = 0.65, corresponding to [5] a value of mq̄ =
0.91(2)ms. The spatial lattice size is 2.24 fm (compared
to 2.72 fm in the previous quenched calculation).

2) Many more gauge configurations are generated – 78
with dynamical fermions compared with the earlier 20
quenched configurations.
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Fig. 1a–d. The four contributions to the two-
point correlation function C2

3) Previously the densities were measured only at the
7 on-axis points r = 0, 1, . . . , 6. Now the densities at 20
points are measured – the same 7 on-axis with the addition
of 13 off-axis points. This permits a potentially much more
detailed mapping of the density profiles. Furthermore, it
opens up the possibility of testing the rotational invariance
of these profiles by comparing them at r = 5 with that at
(x = 3, y = 4) and also r = 3 with (x = 2, y = 2, z =
1). This symbolic notation for an off-axis point will be
used throughout the article. In practice, it includes the
8 possibilities (x = ±3, y = ±4) and (x = ±4, y = ±3),
so that when combined with the directions along the 3
axes, this makes 24 independent measurements for each
symbolic (x, y), when x �= y. In contrast, the on-axis cases
have only 6 independent measurements for each r. This
will be seen to improve significantly the statistics for the
off-axis points compared with their neighboring on-axis
points. This is in spite of the fact that an off-axis point
requires a longer string of latticized links, so that – being
guided by strong coupling arguments – it should be more
difficult to measure.

4) Since the work in [2], the methods and our understand-
ing of the data analysis have been developed. In particular,
the interesting off-diagonal density terms are always al-
lowed to vary and are no longer fixed to zero as was some-
times the case earlier. This now gives a better estimate of
excited state effects. Also for the radial dependence of the
density xαβ(r), the use of a separable form yα(r)yβ(r) is
also employed. Here α, β are state indices with α = 1 be-
ing the ground state. This separable form is found to have
some interesting features not found in the non-separable
approach. Furthermore, if the densities were to be inter-
preted in terms of underlying wavefunctions ψα(r), then
the separable form xαβ(r) = ψα(r)ψβ(r) would be per-
fectly natural. However, it should be emphasised that such
an interpretation can only have a phenomenological justi-
fication.

In Sect. 2 the two- and three-point correlation func-
tions needed to extract the densities are briefly discussed –
the reader being referred to [2] for more details. In Sect. 3
the methods for analysing the basic lattice data are de-
scribed. This results in values for the ground and some ex-
cited state energies and, in addition, radial distributions of
the charge (vector) and matter (scalar) densities for these
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Fig. 2a,b. The two contributions to the three-point correlation
function C3

states are extracted. In Sect. 4 these radial distributions
are parametrized in terms of latticized forms of Yukawa,
exponential and gaussian functions. In Sect. 5 a summary
and some conclusions are made.

2 The correlation functions C2 and C3(r)

In this work the basic entities are the two- and three-point
correlations C2 and C3, both of which are needed for mea-
suring radial distributions. These are depicted in Figs. 1
and 2 and are seen to be constructed from essentially two
quantities – the heavy (static)-quark propagator GQ and
the light-quark propagator Gq.

As discussed in detail in [2], when the heavy-quark
propagates from site (x, t) to site (x′, t + T ), GQ can be
expressed as

GQ(x, t;x′, t+ T ) =
1
2
(1 + γ4)UQ(x, t, T )δx,x′ , (1)

where UQ(x, t, T ) =
∏T−1

i=0 U4(x, t + i) is the gauge link
product in the time direction. On the other hand, as the
light-quark propagates from site i to site j, it can be
schematically expressed as [5]

Gq = Gji = Q−1
ji = 〈(Qikφk)∗φj〉 = 〈ψ∗

i φj〉. (2)
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or as

G′
q = G′

ji = γ5〈(Qjkφk)φ∗
i 〉γ5 = γ5〈ψjφ

∗
i 〉γ5. (3)

Here the φi are pseudo-fermions situated on the lattice
sites i and ψi = Qikφk, where Q is the Clover–Wilson–
Dirac matrix, which is specified by CSW and the hopping
parameter κ.

Knowing GQ and Gq, the general form of a two-point
correlation can be constructed from a heavy-quark propa-
gating from site (x, t) to site (x′, t+ T ) and a light-quark
propagating from site (x′, t+ T ) to site (x, t) as

C2(T ) = Tr〈Γ †GQ(x, t;x′, t+ T )ΓGq(x′, t+ T ;x, t)〉
= 2〈Re

[
UQ[ψ∗(x, t+ T )φ(x, t)

+φ∗(x, t+ T )ψ(x, t)]]〉. (4)

Here Γ is the spin structure of the heavy-quark light-quark
vertices at t and t + T . In this case Γ = γ5, since we
are only interested in pseudoscalar mesons such as the B-
meson. For clarity, the Dirac indices have been omitted.

Similarly, when the light-quark field is probed by an
operator Θ(r) at t = 0 and the heavy-quark propagates
from t = −t2 to t = t1

C3(−t2, t1, r) = Tr〈Γ †GQ(x,−t2;x, t1)Γ ·
Gq(x, t1;x + r, 0)Θ(r)G′

q(x + r, 0;x,−t2)〉. (5)

Here Θ = γ4 for the charge distribution and 1 for the
matter (scalar) density.

The above has been written down for a single type
of gauge field. However, the correlations can be greatly
improved by fuzzing. In this case the basic links containing
the gauge field have two fuzzings in addition to the original
local field (L). In the standard notation of, for example [6],
Fuzz1 has 2 iterations and Fuzz2 a further 6 iterations i.e.
8 in all. These will be referred to as F1 and F2. In both
cases, the factor multiplying the basic link is fp = 2.5 i.e.

[Projected fuzzed link] =
fp · [Straight link] + [Sum of 4 spatial U-bends]

with the quarks separated by a product of fuzzed links of
length 1 lattice unit for Fuzz1 and 2 lattice units for Fuzz2,
as discussed in [2]. With fuzzing included, C2 and C3 are
now 3× 3 matrices composed of matrix elements with the
indices LL, LF1, LF2, F1F1, F1F2 and F2F2. This means
that S-wave excited state energies and properties can now
be studied in addition to those of the ground state.

3 Analysis

There are several ways of analysing the above correlation
functions C2 and C3 in order to extract the quantities of
interest i.e. energies and radial distributions. For a review
of these methods see [7,8] – with more details using the
present notation being found in [2]. We now draw upon
experiences learnt in that reference.

Firstly, the two-point correlation data C2 are analysed
to give the energies (mα) and eigenvectors (v) for the
states of the Qq̄-system. These values of mα and v are
then fixed when analysing the three-point correlation data
C3 to give the charge and matter densities xαβ(r).

3.1 Analysis of the two-point correlation functions C2

Consider the correlation function C2(T ) as an n×nmatrix
– 3 × 3 in this case with the elements LL, LF1, . . . , F2F2.
Each element C2,ij(T ) is then fitted with the form

C2,ij(T ) ≈ C̃2,ij(T ) =
M2∑
α=1

vα
i exp(−mαT )vα

j , (6)

where M2 is the number of eigenvalues and m1 is the
ground state energy of the heavy-light meson. The val-
ues of mα and vα

i,j are then determined by minimizing the
difference between the C2 data from the lattice and the
form C̃2. The function actually minimized is the usual

χ2 =
∑
i,j

T2,max∑
T2,min

[
C2,ij(T ) − C̃2,ij(T )

∆C2,ij(T )

]2

, (7)

where ∆C2,ij(T ) is the statistical error on C2,ij(T ) and
T2,min, T2,max are the minimum and maximum values of
T2 used in the fit.

The outcome is shown in Table 1, where we present 4
cases. In most of this paper we will concentrate on Case B,
since this has both a good χ2/ndof of 0.16 and sufficiently
small errors on the state energies amα. In contrast, Case
A with M2 = 3 has a large χ2/ndof and Case C large
errors on the amα.

The table also shows – with Case Q – the earlier best
fit in [2] to the 20 quenched configurations with β = 5.7.
When comparing the amα from the four cases, two points
must be kept in mind:

1) Only differences of the amα’s have a meaning, since
the lattice simulation generates different self-energies
to the quarks in Case Q versus Cases A, B, C.

2) The table shows amα, where the lattice spacing a is
≈ 0.17 fm for Case Q and ≈ 0.14 fm for Cases A, B, C.

Removing these two effects results in the ∆mβα = amβ −
amα at the bottom of Table 1. There it is seen that, within
the error bars, both ∆m21 and ∆m31 are unchanged in
going from the 20 quenched configurations – after being
scaled by the ratio of the lattice spacings 0.14/0.17 – to
the preferred unquenched Case B. The best estimates are
∆m21 = 0.33(1), ∆m31 = 0.80(4) and ∆m41 = 1.05(6).
This value of ∆m21 is also the same as that obtained in
[5], when the latter is also scaled by the lattice spacing
ratio 0.14/0.17. However, it should be pointed out that in
[5] the quenched approximation was used with the same
parameters as in [2] but on a 123 spatial lattice.
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Table 1. Values of the parameters amα and vα
i , needed for fitting the C2-correlations.

Case Q: 20 quenched configurations with M2 = 3 and T2,min = 4 – referred to as
Case 3 in [2]. Case A: 78 dynamical configurations with M2 = 3 and T2,min = 4. Case
B: 78 dynamical configurations with M2 = 4 and T2,min = 3. Case C: 78 dynamical
configurations with M2 = 4 and T2,min = 4. The entries [. . . ] for ∆m21 and ∆m31

include the ratio of lattice spacings 0.14/0.17. The entries marked with a dash are not
applicable for M2 = 3

amα Case Q Case A Case B Case C
vα

i 3 × 3 Tmin = 4 3 × 3 Tmin = 4 4 × 4 Tmin = 3 4 × 4 Tmin = 4

am1 0.8721(19) 0.8580(11) 0.8340(40) 0.8280(88)
am2 1.263(13) 1.2267(51) 1.166(11) 1.138(35)
am3 1.94(30) 1.93(13) 1.632(42) 1.52(12)
am4 – – 1.889(58) 1.85(18)
v1
L 0.4847(56) 0.4344(31) 0.3757(99) 0.359(24)

v1
F1 1.519(10) 1.3779(70) 1.227(26) 1.181(65)

v1
F2 0.8402(38) 0.8008(21) 0.731(12) 0.711(31)

v2
L 0.816(16) 0.8405(65) 0.801(12) 0.757(55)

v2
F1 0.644(49) 0.874(22) 1.185(44) 1.260(83)

v2
F2 –0.251(33) –0.115(12) 0.169(47) 0.26(12)

v3
L –0.28(22) –0.348(97) –0.459(29) –0.534(85)

v3
F1 2.2(1.4) 2.34(63) 1.36(16) 0.86(53)

v3
F2 –1.13(81) –0.84(39) 0.56(19) 0.61(25)

v4
L – – 0.000(69) 0.05(19)

v4
F1 – – –0.45(33) –0.73(70)

v4
F2 – – 1.89(22) 1.64(78)

n2,data 54 48 54 48
n2,param 12 12 16 16
n2,dof 42 36 38 32
χ2/n2,dof 0.65 4.27 0.16 0.14

∆m21 0.391(13) 0.369(5) 0.332(12) 0.310(36)
[0.322(11)]

∆m31 1.07(30) 1.07(13) 0.798(42) 0.69(12)
[0.88(24)]

∆m41 – – 1.05(6) 1.02(18)

3.2 Analysis of the three-point correlation function
for radial distributions

The analysis of the three-point correlation functions C3(Θ,
T, r) is performed using a generalisation of the one for C2
in (6), namely,

C3,ij(Θ, T, r) ≈ C̃3,ij(Θ, T, r) (8)

=
M3∑
α=1

M3∑
β=1

vα
i e−mαt1xαβ(r)e−mβ(T−t1)vβ

j .

The mα and v-vectors are those obtained by minimizing
the C2 in (6) and, for each value of r, the xαβ(r) are varied
to ensure a good fit to C3,ij(Θ, T, r) by the model form
C̃3,ij(Θ, T, r).

Two forms of xαβ(r) are used here:

1) A non-separable (NS) form, where each xαβ(r) is treat-
ed as a single entity. Here we take M3 = M2 = 4.
However, for the minimization algorithm migrad to
converge to a reasonable solution, of the 10 possible
values of xαβ(r) for a given value of r, only 7 are var-
ied – the 4 xαα(r) and the 3 x1α(r) with α �= 1. The
other xαβ(r) are fixed to be zero.

2) A separable (S) form xαβ(r) = yα(r)yβ(r). Here, we
take M3 = 3 to give only three free parameters for
each value of r – y1(r), y2(r) and y3(r).

In Table 2 results are given for both the NS and S
forms of xαβ(r) and for different choices of T2,min, T3,min
– with the most representative solution being S(3, 8), the
separable form with T2,min = 3 and T3,min = 8. The other
choices give support to this solution and indicate the possi-
ble systematic error. In the penultimate column is given,
in our opinion, the best overall estimate of the ground
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Table 2. Estimates of the charge radial distributions [x11(r)] for the ground state. Separable case (S): M2 = 4 in
C2, M3 = 3 in C(3). T2,min = 3 and T3,min = 6, 8. Separable case (S): M2 = 4 in C2, M3 = 3 in C(3). T2,min = 4
and T3,min = 8. Non-separable case (NS): M2 = M3 = 4 in C2 and C3 but xij = 0, when neither i nor j is 1.
T2,min = 3 and T3,min = 6, 8. The column labelled Best Estimate is a summary of the previous 5 columns. The
column labelled Approx. Estimate is from (10) for M2 = 3 – Case A in Table 1. The line marked as ‘ave’ is the
weighted mean [6x11(3, 0, 0) + 24x11(2, 2, 1)]/30

S S S NS NS Best Approx.
T2,min 3 3 4 3 3 Estimate Estimate
T3,min 6 8 8 6 8

r x y z

0.00 0 0 0 0.0378(2) 0.0377(4) 0.0349(5) 0.0428(3) 0.0401(8) 0.038(4) 0.047(2)
1.00 1 0 0 0.01214(10) 0.0127(2) 0.0112(3) 0.01343(15) 0.0135(4) 0.0125(15) 0.015(1)
1.41 1 1 0 0.00704(8) 0.0075(2) 0.0068(2) 0.00831(10) 0.0091(3) 0.0080(15) 0.009(2)
1.73 1 1 1 0.00501(8) 0.0052(2) 0.0048(2) 0.00594(11) 0.0063(3) 0.0055(7) 0.0060(3)
2.00 2 0 0 0.00749(9) 0.0072(2) 0.0070(3) 0.00627(11) 0.0068(3) 0.0070(5) 0.0071(5)
2.24 2 1 0 0.00476(6) 0.00470(13) 0.0045(2) 0.00464(6) 0.0047(2) 0.0047(2) 0.0046(3)
2.83 2 2 0 0.00307(7) 0.0031(2) 0.0031(2) 0.00299(7) 0.0031(2) 0.0032(2) 0.0028(2)
3.00 3 0 0 0.00329(10) 0.0034(3) 0.0035(3) 0.00295(11) 0.0035(3) 0.0034(4) 0.0032(5)
3.00 2 2 1 0.00221(6) 0.00216(15) 0.0021(2) 0.00215(6) 0.0019(2) 0.00215(15) 0.0021(2)
3.00 ave 0.00243(6) 0.00241(13) 0.0023(2) 0.00231(5) 0.0022(2) 0.00240(14) 0.0023(2)
3.16 3 1 0 0.00234(6) 0.00244(14) 0.0025(2) 0.00226(6) 0.0026(2) 0.0025(3) 0.0024(2)
3.61 3 2 0 0.00164(6) 0.00178(13) 0.0019(2) 0.00166(5) 0.00188(14) 0.0018(2) 0.0017(2)
4.00 4 0 0 0.00141(10) 0.0015(3) 0.0016(4) 0.00126(10) 0.0014(3) 0.0015(3) 0.0012(2)
4.12 4 1 0 0.00095(5) 0.00105(13) 0.0011(2) 0.00092(5) 0.00115(15) 0.0011(2) 0.0009(1)
4.24 3 3 0 0.00082(8) 0.0010(2) 0.0010(3) 0.00085(7) 0.0011(2) 0.0010(3) 0.0008(2)
4.47 4 2 0 0.00074(5) 0.00075(12) 0.0007(2) 0.00076(5) 0.00068(15) 0.00070(15) 0.0005(2)
5.00 4 3 0 0.00067(6) 0.00080(10) 0.0009(2) 0.00078(5) 0.00115(14) 0.0009(3) 0.0008(2)
5.10 5 1 0 0.00046(6) 0.00053(14) 0.0006(2) 0.00050(5) 0.0007(2) 0.0006(2) 0.0005(2)
5.39 5 2 0 0.00033(8) 0.00044(14) 0.0005(2) 0.00036(5) 0.0006(2) 0.0005(2) 0.0003(1)
5.83 5 3 0 0.00020(5) 0.00026(12) 0.0003(2) 0.00027(5) 0.0005(2) 0.00035(15) 0.0004(2)

state charge density with error. The last column shows
estimates using Case A in Table 1. As shown in [2], in
this case the vα

i matrix is square and so can be inverted
to give the matrix uα

i . Estimates C̄3,αβ(T ) can then be
written down directly as

C̄3,αβ(T ) = uα
i C3,ij(T )uβ

j . (9)

In this case

x11(r) = lim
T→∞

〈C̄3,11(T, r)〉
〈C̄2,11(T )〉 . (10)

Unfortunately, the extraction of the asymptotic T → ∞
limit is somewhat subjective and gives the estimates in the
last column in Table 2. In all the cases listed, within errors
these agree with the previous column. However, this ap-
proach did show that the data from some of the larger val-
ues of (x, y) were not good and so these are dropped in the
subsequent discussion. Also, for reasons to be discussed in
Sect. 4.5, neither the (2,2,1) data nor the weighted average
of (3,0,0)/(2,2,1) are included in the following analysis.

In Table 3 similar estimates are given for charge den-
sities involving excited states. Also this table contains a

summary of the x11(r) and x12(r) matter radial distri-
butions, which were extracted using both the NS and S
forms for different choices of T2,min, T3,min – just as in the
charge case. However, these signals are somewhat weaker
than for the charge, so that no meaningful matter distri-
butions could be extracted for r ≥ 4a.

In Fig. 3 the best estimates of the charge and mat-
ter distributions from Tables 2 and 3 are compared. To
guide the eye we also show lines depicting the lattice ex-
ponential fits to be discussed later in Sect. 4.1. Here it
is clearly seen that the range of the charge distribution
is longer than that of the matter distribution. Further-
more, this figure also contains the charge and matter den-
sities obtained with the quenched approximation in [2].
For this comparison, the results of [2] are scaled from lat-
tice spacing a0.14 to a0.17 by simply r0.17 → ρr0.17 and
x11(r0.17) → ρ−3x11(r0.17), where ρ = 0.17/0.14. Here it is
seen that the present results using dynamical fermions are
indistinguishable from those using the quenched approxi-
mation. It will be seen later in the last two columns of Ta-
ble 4, that this near equality is also reflected in the charge
sum rules with both giving x11 = 1.4(1). As discussed in
[9] and [10], this is of particular interest in the matter case,
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Table 3. Best estimates of radial distributions of charge and matter distributions involving
also excited states. The column labelled x11 (AE) is an approximate estimate from (10)
for M2 = 3 – Case A in Table 1. The entry ‘–’ implies that a reasonable signal could not
be obtained and the entry ‘ave’ has the same definition as in Table 2

Charge Matter
r x12 x13 x22 x11 x11 (AE) x12

0.00 0.079(4) −0.050(2) 0.18(2) 0.045(3) 0.058(2) 0.090(5)
1.00 0.0160(5) 0.015(2) 0.021(3) 0.0133(5) 0.016(1) 0.009(1)
1.41 0.0045(15) 0.010(2) 0.003(1) 0.0073(7) 0.0076(6) −0.001(1)
1.73 0.0010(10) 0.007(2) 0.005(4) 0.0049(5) 0.0045(6) −0.0030(7)
2.00 0.0020(5) 0.0005(15) 0.0005(4) 0.006(1) 0.0054(5) −0.003(1)
2.24 0.0000(3) 0.0022(5) 0.0000(1) 0.0038(4) 0.0032(3) −0.0030(7)
2.83 −0.0010(3) −0.0005(10) 0.0003(2) 0.0017(2) 0.0013(3) −0.0015(3)
3.00 −0.0009(4) −0.0018(15) 0.0003(2) 0.0014(3) 0.0013(3) −0.0010(3)
3.00 −0.0007(2) 0.0010(10) 0.0003(2) 0.0016(2) 0.0009(2) −0.0018(5)
ave −0.0007(2) 0.0004(9) 0.0003(2) 0.0016(2) 0.0010(2) −0.0016(4)
3.16 −0.0009(2) −0.0010(10) 0.0003(2) 0.0009(2) 0.0009(3) −0.0005(5)
3.61 −0.0010(2) −0.0010(5) 0.0006(2) 0.0007(2) 0.0005(3) −0.0008(4)
4.00 −0.0007(2) −0.0018(12) 0.0005(3) – – –
4.12 −0.00045(15) −0.0010(8) 0.0003(2) – – –
4.24 −0.00050(15) −0.0011(8) 0.0005(3) – – –
4.47 −0.00040(15) −0.0000(5) 0.00025(15) – – –
5.00 −0.0007(2) −0.0010(5) 0.00065(15) – – –
5.10 −0.00040(15) −0.0008(4) 0.0004(2) – – –
5.39 −0.0003(2) −0.0005(3) 0.0003(2) – – –
5.83 −0.0003(2) 0.0001(3) 0.0001(2) – – –

Fig. 3. The ground state charge (C) and matter (M) densities
[x11(r)] as a function of r in units of a. The lines shows a
fit to these densities with a sum of two lattice exponential
functions. The scaled quenched results of [2] are also shown by
filled circles and squares

since there disconnected contributions could arise that are
dependent on the quenched versus unquenched. Any dif-
ference would then be due to the effect of the quark con-
densate. Clearly, with the present data no such effect can
be detected. However, it must be remembered that here
the sea quarks have the same mass as the valence quarks

i.e. about that of the strange quark. It is possible that
using sea quarks with more realistic u, d quark masses the
above conclusion would be different. This observation that
full QCD and the quenched approximation do not differ
significantly has been seen many times before.

In Fig. 4a, for the charge density ratio x12/x11, only
the errors for the separable analysis with T2,min = 3 and
T3,min = 8 are shown, since the other analyses have similar
errors. There a distinct node is seen at about 2.2 lattice
spacings i.e. at ≈ 0.3 fm. Such a node is natural for x12,
since it involves the excited S-wave state. On the other
hand, for the matter density – as seen in Fig. 4c – the
node is near to 1.5a ≈ 0.2 fm. Figure 4b shows the var-
ious analyses for the charge density ratio x13/x11. Here
the node structure is less clear. One node is seen at about
2.8 lattice spacings i.e. at ≈ 0.4 fm. But a second possible
node at about 0.6 lattice spacings, i.e. at ≈ 0.1 fm, de-
pends on the one value of x13 at r = 0. However, we have
no reason to suspect that this is purely a lattice artefact.
Furthermore, for second excited S-wave states a second
node is not unexpected. Similar comments hold for the
matter density ratio x13/x11 in Fig. 4d. The node struc-
ture of x22 – the charge density of the first excited state –
is not at all clear. If x22 is expressed in the separable form
y2(r)y2(r), then the zero that should appear at about 2a
is not seen very distinctly in comparison with that seen in
Figs. 4a or c for x12/x11.

The above figures show directly the various charge den-
sities xαβ(r). However, it is also of interest to see the struc-
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Table 4. The charge and matter sum rules in the ground state x11 and between excited states. The
symbols N and NS are as in Table 2. Q refers to the quenched results (case 3) in [2]. The entries
marked with a dash are not applicable for M3 = 3

S S S NS NS NS Q-NS
T2,min/T3,min (3/6) (3/8) (4/8) (3/6) (3/7) (3/8) (3/8)

xαβ

Charge

x11 1.12(3) 1.26(6) 1.26(8) 1.29(4) 1.36(6) 1.42(11) 1.41(5)
x12 0.09(3) −0.10(9) −0.05(12) −0.28(7) −0.40(12) −0.5(2) −0.5(2)
x13 0.02(9) −0.3(4) −0.1(4) 0.09(11) −0.2(2) −0.3(6) 0(1)
x14 – – – −0.1(2) −0.4(4) −0.5(1.1) –
x22 0.008(5) 0.007(14) 0.002(9) 0.8(2) 0.9(3) 1.1(6) 0.9(9)

χ2/ndof 2.52 0.65 0.63 0.31 0.13 0.09 0.26

Matter

x11 0.66(5) 0.85(14) 1.0(2) 0.73(8) 0.83(11) 1.1(2) 0.38(15)
x12 −0.15(6) −0.5(2) −0.6(3) −0.27(13) −0.4(2) −0.8(4) −0.1(5)
x13 −0.4(2) −1.7(1.0) −1.6(9) −0.3(2) −0.9(4) −2.7(1.2) −1(5)
x14 – – – −0.2(3) −0.8(7) −3.2(2.2) −
x22 0.04(3) 0.3(2) 0.4(4) 0.2(3) 0.2(6) 0.2(1.2) 1(2)

χ2/ndof 0.46 0.29 0.25 0.31 0.25 0.12 0.35

ture of the individual terms yα(r) in the separable form
xαβ(r) = yα(r)yβ(r). These are shown in Fig. 5 for both
the charge and the matter. Figure 5a shows clearly that
y1(r) for the charge has a significantly longer range than
for the matter. Also as seen in Fig. 5b both of the y2(r)
exhibit a distinct node and are responsible for the nodes
in the separable form of the density x12 already seen in
Fig. 4a. We do not plot y3(r), since the signal/error ratio
is too small.

As discussed at the end of the Introduction, the yα(r)
can possibly be interpreted as wave functions for the state
α. However, there are other radial distributions associ-
ated with the Qq̄ system that can also be interpreted as
wave functions. These are the Bethe-Salpeter wavefunc-
tions [wα(r)] discussed in [5]. They were extracted by as-
suming the hadronic operators C2,αα(r1, r2, T ) to be of
the form wα(r1)wα(r2) exp(−mαT ), where the sink and
source operators are of spatial size r1 and r2. In Fig. 5
a comparison is made between the above values of y1(r)
and y2(r) and the corresponding results form [5] for w1(r)
and w2(r), where the latter have been normalised so that
w1(0) = y1(0) and w2(0) = y2(0) and the values of r
scaled. Even though they do bear some similarities, it
should be added that there are several reasons why these
two types of wave function should not agree in detail with
each other. In particular, the [wα(r)]2 cannot be identified
as a charge or matter distribution.

3.3 Charge sum rule

In addition to measuring C3(r) for various values of r, the
correlation where r is summed over the whole lattice is also
obtained. This leads to the charge sum rule as discussed
in [2]. The actual values of this sum rule are extracted

using (8), where the xαβ are now independent of r. The
outcome – as shown in Table 4 – is that x11 is ≈ 1.3(1)
consistent with the earlier quenched result. The fact that
x11 is not unity – as expected in the continuum limit –
can be qualitatively understood by introducing a renor-
malisation factor of ≈ 1/1.3 ≈ 0.8 into the basic γ4 vertex
used to measure the charge density. Such a factor of this
magnitude is reasonable as shown in [11].

It is also reassuring that the xαβ with α �= β are, in
general, consistent with zero – as expected in the contin-
uum limit. However, the interpretation of x22 is less clear.
The non-separable (NS) case gives x22 ≈ 1.0(4) – again
a reasonable value in the continuum limit – whereas the
separable case (S) yields x22 ≈ 0.0. This suggests that
the separable approximation may be less appropriate for
excited states.

In Table 4 we also show the matter sum rule. These
have a somewhat wider spread of values with 0.9(1) being
a reasonable compromise – a number that is about twice
the estimate of 0.38(15) for the quenched calculation of [2].
Perhaps this is an indication – unlike the matter radial dis-
tributions in Fig. 3 – that the quenched and unquenched
results can differ even with the present sea quark masses
of about the strange quark. However, we do not have the
data to cross check with [9] and [10], which advocate the
existence of such a difference for the matter sum rule.

4 Form of radial dependence

The results in Table 2 are presented as simply a series
of numbers for each value of r or (x, y, z). However, it
would be more convenient and perhaps illuminating, if
they could be parametrized in some simple way. This can
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Fig. 4. a and b: the ratios x12/x11 and x13/x11 for the charge distribution. c and d: these ratios for the matter distribution

be done either in coordinate or momentum space – the
topics of the next subsections.

4.1 Coordinate space fit

Here we assume that the radial dependences of the lattice
data in Table 2 can be represented in terms of exponen-
tial (E), Yukawa (Y) or gaussian (G) functions. Then the
strategy is to first fit the data at the largest values of
r with a single form in order to parametrize the longest
ranged part of the data, where it is expected that lattice
artefacts will be less. This range is then used as a starting
point, when the data at all values of r are fitted by adding
a second form.

The reason for using exponential and Yukawa radial
functions is that they arise naturally as propagators in
quantum field theory – usually in their momentum space
form (q2 +m2)−1. However, if we go away from quantum
field theory and attempt to understand the radial depen-
dences in terms of wavefunctions from, for example, the
Dirac equation, then gaussian forms can then arise.

4.1.1 Lattice exponential, Yukawa and gaussian fits
to the charge and matter densities

As seen in Fig. 3, the data is far from being a smooth
function of r – indicating lattice artefact effects. Therefore,
lattice versions of the exponential, Yukawa and gaussian
forms (LE, LY, LG) are used. In [12] the lattice form of
the Coulomb function (1/r) is written as[

1
r

]
LC

=
π

aL3

∑
q

cos(r.q)
D

. (11)

Here L is the lattice size along one axis and

D =
3∑

i=1

sin2(aqi/2),where

aqi = 0,
2π
L
, . . . ,

2π(L− 1)
L

,q �= 0.

In this subsection, for clarity, the lattice spacing a is shown
explicitly. For the above Yukawa form, (11) is easily gen-
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Fig. 5a,b. The separable “wavefunctions” y1 and y2 defined
in the density xαβ(r) = yα(r)yβ(r). a y1 – Solid line for the
charge, dashed for the matter, solid circles the Bethe-Salpeter
wavefunction from [5], b y2 – notation as in a

eralised to[
exp(−r/rLY)

r

]
LY

=
π

aL3

∑
q

cos(r.q)
D + 0.25[a/rLY]2

. (12)

However, now the point q = 0 can be included in the sum,
since it is no longer a singularity – provided 1/rLY �=
0. Similarly, lattice forms of the exponential and gaus-
sian can be obtained by simply replacing in the usual
Fourier transform the q2 factors by their lattice equiva-
lent 4

a2

∑3
i=1 sin2(aqi/2) = 4D

a2 . This results in[
e−r/rLE

]
LE

=
πa

2rLEL3

∑
q

cos(r.q)[
D + 0.25(a/rLE)2

]2 , (13)

[
e−(r/rLG)2

]
LG

=
[
rLG√

π

aL

]3 ∑
q

cos(r.q)e−D(rLG/a)2. (14)

Fig. 6. Fit to the lattice data in Table 2 with lattice exponen-
tial (2LE), Yukawa (2LY) and gaussian (2LG) forms in Table 5

Using these lattice forms yields columns 2LY, 2LE and
2LG in Tables 5 and 6 for the charge and matter respec-
tively. For comparison the parameters for the correspond-
ing non-lattice forms are given in columns 2Y, 2E and 2G.
Here the prefix ‘2’ indicates that each form contains two
terms – as needed by the strategy outlined above. It is
seen that the values of rF0 for all three lattice forms 2LE,
2LY and 2LG are quite similar to their 2E, 2Y and 2G
counterparts. The outcome is that the lattice forms are
able to reproduce some of the structure especially near
r = 2 and 3 – as seen in Figs. 3 and 6. This is also re-
flected in the χ2/ndof ’s being now less than unity for the
charge case and < 1.2 for the matter. At first sight the
two parametrizations 2LE and 2LY look very different,
since (12) and (13) have such dissimilar forms. In addi-
tion, in 2LE the two terms add up, whereas in 2LY they
cancel, since a2LY

0 and a2LY
1 have opposite signs in order to

dampen the 1/r effect at small r. However, later we shall
see that, in practice, 2LE and 2LY behave in very similar
ways – with little numerical preference for one over the
other.

The conclusion from this subsection is that all three
parametrizations 2LE, 2LY and 2LG are acceptable, since
each can fit all the lattice data with χ2/ndof ’s comparable
to unity.

4.1.2 Lattice exponential, Yukawa and gaussian fits
to the separable form of the charge and matter densities

The above has concentrated on fitting directly the ground
state charge density x11(r) in (8). However, in Sect. 3.2 a
second and possibly more natural parametrization – a sep-
arable form xαβ(r) = yα(r)yβ(r) – was introduced. This
resulted in the data shown in columns S of Table 2. Here
we consider that the y1(r) are simply

√
x11(r), where the

latter are the Best Estimate values in Table 2. The corre-
sponding fits 2LES, 2LYS and 2LGS, with the above forms
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Table 5. Fits to the charge lattice data with exponential, Yukawa and Gaussian
forms. Column 2E refer to the exponential form

∑
0,1 aE

i exp(−r/rE
i ). Column 2Y

refer to the Yukawa form
∑

0,1 aY
i exp(−r/rY

i )/r. Column 2G refer to the gaus-
sian form

∑
0,1 aG

i exp(−(r/rG
0 )2). Also fits to the lattice data with the lattice

Yukawa (2LY), exponential (2LE) Gaussian (2LG) forms from (12), (13) and (14).
IE = 8π

∑
0,1 aE

i (rE
i )3, IY = 4π

∑
0,1 aY

i (rY
i )2, IG = π3/2 ∑

0,1 aG
i (rG

i )3 are the spacial
integrals of these functions. The entries marked as ∗ are fixed in the minimization

Form(F ) 2E 2LE 2Y 2LY 2G 2LG

aF
0 0.0250(22) 0.0245(21) 0.069(10) 0.066(3) 0.0086(5) 0.0075(7)

rF
0 1.36(6) 1.37(6) 1.70(6) 1.78(7) 2.92(9) 3.07(12)

aF
1 0.013(5) 0.373∗ –0.073∗ –0.060∗ 0.0293(41) 0.019(4)

rF
1 0.2(4) 0.116(15) 1.00(17) 1.12(11) 0.75(7) 0.99(15)

IF 1.6(3) 1.6(3) 1.6(5) 1.7(3) 1.3(1) 1.3(2)

χ2/ndof 1.32 0.81 1.33 0.94 1.47 0.93

Table 6. Fits to the matter lattice data with exponential, Yukawa and Gaussian forms.
In 2LY† the r = 0 data point is not fitted. Other notation as in Table 5

Form (F) 2E 2LE 2Y 2LY† 2G 2LG

aF
0 0.036(20) 0.0345(26) 0.178(12) 0.186(23) 0.0105(12) 0.0101(16)

rF
0 0.91(13) 0.938(39) 1.04(12) 0.92(6) 2.11(9) 2.14(11)

aF
1 0.009(20) 0.561∗ –0.168∗ –0.207∗ 0.0346(32) 0.034(10)

rF
1 0.45(55) 0.099(11) 0.90(18) 0.71(12) 0.71(4) 0.70(12)

IF 0.7(5) 0.73(10) 0.7(9) 0.7(6) 0.62(10) 0.62(13)

χ2/ndof 1.80 1.16 1.74 1.11 1.11 1.00

Table 7. Fits to the separable function y1(r) defined as y1(r) = (x11)1/2, where
the x11 are the charge density values labelled as Best Estimate in 2. Notation as in
Table 5

Form (LFS) 2ES 2LES 2YS 2LYS 2GS 2LGS

aLFS
0 0.159(7) 0.156(8) 0.47(3) 2.4310(60) 0.092(3) 0.083(4)

rLFS
0 2.73(12) 2.59(9) 4.40(21) 2.86(11) 4.19(12) 4.44(17)

aLFS
1 0.036(13) 0.0422∗ –0.49∗ –2.4196∗ 0.102(11) 0.065(6)

rLFS
1 0.2(5) 0.41(17) 1.66(22) 2.43(10) 0.85(9) 1.24(15)

χ2/ndof 1.32 1.11 1.33 1.11 1.75 1.07

are shown in Tables 7 and 8. For comparison the results
from using the usual non-lattice forms 2ES, 2YS and 2GS
are also included.

The conclusion to be drawn from this section is that
the lattice data extracted in Sect. 3 can be well fitted by
any of the three lattice forms in (12), (13) or (14) – nu-
merically none of them is superior and also none can be
rejected. This statement applies not only to the direct
parametrizations of the density as in Sect. 4.1.1 but also
to the separable form in Sect. 4.1.2.

4.2 Momentum space fit

Often it is more convenient to view data in momentum
space by making the transformation

xαβ(k) =
∑
r

cos(k.r)xαβ(r), (15)

where the r summation should be over the whole 3-dimen-
sional L3 lattice. This would mean, in the present calcu-
lation, summing x, y and z over the ranges −7 to +8. If
the lattice Yukawa, exponential and gaussian expressions
in (12), (13) and (14), written as

x(r) =
π

L3

∑
q

cos(r.q)F (q), (16)

are now used to parametrize x(r), then we simply get

x(k) = πF (k). (17)

Here use has been made of the identity
∑

r cos[r.(k−q)] =
L3δk,q. From (15) we see that the sum rule discussed ear-
lier is now directly x(k = 0) = πF (0) = IF, where the IF
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Table 8. Fits to the separable function y1(r) defined as y1(r) =
(x11)1/2, where the x11 are the matter density values in Table 3.
In 2LY† the r = 0 data point is not fitted. Other notation as
in Table 5

Form (LFS) 2YS 2LYS†

aLFS
0 0.75(4) 0.74(4)

rLFS
0 2.39(27) 2.25(18)

aLFS
1 –0.728∗ –0.774∗

rLFS
1 1.52(28) 1.36(20)

χ2/ndof 1.84 1.25

are defined in the caption of Table 5. The other fourier
components with k �= 0 are simply πF (k).

4.2.1 The inclusion of lattice data directly into (15)

The result in (17) is not surprising, since it is simply the
Fourier transform of a Fourier transform. However, if –
where available – the lattice data of Table 2 are used for
the xαβ(r) in (15) and the form in (16) only used for
the missing densities, then the result should be an im-
proved estimate of the xαβ(k). A measure of this can be
obtained by fitting this improved estimate with the forms
F (k, ai, ri) in (12), (13) and (14), but where the parame-
ters ai, ri are tuned using the Minuit minimization package
and are not the ones appearing in Tables 5 and 7.

As we shall see in the next subsection, the fits of main
interest are 2LY, 2LE and 2LYS, since they possibly have
a physical interpretation. However, this fitting procedure
presents some problems, since we are attempting to fit 165
numbers with only four parameters (ai=0,1, ri=0,1) – the
xαβ(k) with ki = 0, 2π

L , . . . ,
2π(L−1)

L . Another problem is
the choice of function to be minimized. We consider two
options:

(i) N1 =
[
xFT(k) − xmodel(k)

]2 and
(ii) N2 =

[
xFT(k)/xmodel(k) − 1

]2,
where the xFT(k) are the Fourier transforms (with or
without direct data inclusion) defined in (15) and the
xmodel(k) are the πF (k) in (16). Since the xFT(k) decrease
rapidly as k increases, Option (i) emphasizes the smaller
values of k and is appropriate for extracting r0, which is
the longer range. In principle, Option (ii) is better since
it should give an overall fit to the xFT(k). But in prac-
tice, it tends to be unstable yielding either unacceptable
solutions or very large error bars.

If the 2LY fit to the charge density in Table 5 is anal-
ysed with a Yukawa form, then Options (i) and (ii) give
poles at r0 = 1.78(24) and 1.78(9) respectively – see Ta-
ble 9. This is to be compared with the input value of
1.78(7) in Table 5. A similar strategy can be applied to
the improved x11(k) generated from (15), where x11(r)
now contains directly lattice data wherever possible. In
this case, Options (i) and (ii) yield r0 = 1.78(20) and
3.3(1.0) i.e. the result from Option (i) is not distinguish-
able from using the fitted expression in (12) for all values

Table 9. The value of r0 from fits to the Fourier transform of
the charge density x11(r) as defined in (15). Row A: r0 directly
from Tables 5 and 7. Row B: r0 extracted from the Fourier
Transform of x11(r) when these are expressed in terms of the
analytic expressions in (12), (13) and (14) with the parameters
in Tables 5 and 7. Option (i) is used for defining the χ2. Row
C: Same as Row A but using Option (ii). Row D: The x11(r)
are the same as in row B and C, except that the data from
Table 2 is used wherever possible – Option (i) used. Row E:
Same as Row D but using Option (ii)

Extract with 2LY 2LE

A 1.78(7) 1.37(6)

Form 2LY 2LE

B 1.78(24) 1.38(22)
C 1.78(9) 1.38(15)
D 1.78(20) 1.39(23)
E 3.3(1.0) 1.41(16)

of r, whereas that from Option (ii) is unstable. Similarly,
if the 2LE fit in Table 5 is analysed with an exponential
form, then Options (i) and (ii) give poles at r0 = 1.38(22)
and 1.38(15) respectively. This is to be compared with the
input value of 1.37(6) in Table 5. For the improved form of
the density the two Options yield 1.39(23) and 1.41(16).
Again Option (i) is indistinguishable from using only the
fit values of x11(r). However, now option (ii) is more stable
than before.

The conclusion to be drawn from Table 9 is that the
parametrizations in Tables 5 and 7 are so good that any
improvements on r0 due to the inclusion of explicit lattice
data cannot be detected. Therefore, in the following dis-
cussions the Fourier transforms based purely on Tables 5
and 7 will, in general, be used.

4.3 Possible interpretations of the above fits

In the above, the use of the various forms E, Y, . . . , LYS,
LGS is considered as a purely numerical exercise. How-
ever, one can also ask about any theoretical interpreta-
tion of, or preference for, one form over the others. As we
shall see below, in some cases, this is best discussed in
momentum space. Also, since the inclusion of the original
data has little effect, the fourier transform of the charge
density should be well described by simply πF (k). There-
fore, the discussion below focusses on the interpretation
of the different forms of πF (k). Here several possibilities
are suggested:

4.3.1 Y and LY

These forms can be directly identified as the propagators
of a single particle. In the Y form – aY

i exp[−r/rYi ]/r – the
masses of the propagating particles are simply 1/rYi . Also
for LY by writing the denominator of (12) in the contin-
uum limit as q2

4 + 0.25[a/rLY
i ]2, we see that these masses
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can also be identified as 1/rLY
i . For the charge case these

will be vector particles, whereas for the matter case they
are scalars. From the fits to the charge distributions in Ta-
ble 5, the vector masses that emerge are – in lattice units
of about 1.4 GeV – amv

0,2LY = 0.56 ± 0.02 and amv
1,2LY =

0.89±0.11 with the corresponding scalar masses from the
matter distribution in Table 6 being ams

0,2LY = 1.09±0.06
and ams

1,2LY = 1.4 ± 0.2.

4.3.2 E and LE

Looking at Fig. 2 for the three-point correlations, a cut
in the T -direction intersects the two light-quark propaga-
tors Gq(t1 → 0) and Gq(0 → −t2). In comparison, the
lattice exponential form in (13) also contains a product
of two propagator-like terms 1/[D + 0.25(a/rE)2]. This
then suggests that the exponential form may be inter-
preted as the product of two non-interacting quark prop-
agators. Assuming that the momentum of the probe is
divided equally between the two propagators, then the ap-
propriate momentum transfer in each propagator becomes
q/2. Now, when going to the continuum limit, the denomi-
nators in (13) give the masses of the propagating particles
as 1/2rLE

i i.e. in the charge case am0,2LE = 0.36±0.02 and
am1,2LE ≈ 4.5. Therefore, one interpretation of m0,2LE is
that this is the mass of a constituent quark used in the
naive quark model description of the meson as simply two
non-interacting quarks. This would give a vector mass of
amv

0,2LE = 0.72 ± 0.04. A similar interpretation can be
made for the matter case to give a scalar meson of mass
ams

0,2LE = 1.07 ± 0.05.
It should be added that in our earlier work in [2] using

the quenched approximation, the data were so sparse that
an overall fit with only a single exponential was attempted
over a limited range of r values – the overall fit with a
single Yukawa being much worse. Therefore, to compare
with the above values of amv,s, a single Yukawa fit to the
data at the largest values of r for which the data were
still reliable was carried out. For case 3 in [2], the charge
density data at r = 3 and 4 gave amv = 0.6(1) – scaled to
a = 0.14 fm. Similarly, the matter density data at r = 2
and 3 gave ams = 1.0(2). These values are not significantly
different to the present estimates.

In the above, the masses have been extracted by a
somewhat tortuous argument. However, in the literature
there have been direct calculations of the energies of these
qq̄ states using the same lattice parameters and lattice size
as those employed here. In [3] they got amv

0 = 0.785±0.009
and in [7] ams

0 = 1.18±0.08. These numbers are consistent
with our above estimates from the 2LE fit i.e. 0.72 ± 0.04
and 1.07 ± 0.05 respectively. Also from the 2LY fit, the
scalar mass of ams

0,2LY = 1.09 ± 0.07 is consistent with
this value. But the vector mass of amv

0,2LY = 0.56±0.02 is
somewhat too small. This difference can be considered as
a measure of the systematic error on mv

0 and suggests that
the present data do not extend to sufficiently large values
of r for a reliable estimate to be made of the asymptotic
form.

Unfortunately, it is not straightforward to identify the
above particles and their masses directly with physical
particles, since we use light quarks that have the isotopic
spin properties of u, d quarks but with masses about that
of the strange quark. In addition, we do not calculate mass
or density contributions that arise from disconnected cor-
relations. For vector mesons, the latter has been shown in
[13] to be only a small effect i.e. the OZI rule is justified in
this case. On the other hand, this appears not to be so for
scalar mesons. Evenso, in the vector case it is not reason-
able to identify the above range of values mv

0 = 0.9 ± 0.1
and mv

1 = 1.4±0.3 GeV directly with the isovector ρ(0.77)
and the radial excited ρ(1.45) from [14], since in the quark
model, the latter are constructed from u, d quarks with the
correct mass – a value much less than the strange quark
mass used here. However, since the OZI rule is a very good
approximation for vector mesons, the additional mass of
a state with strange quarks can be taken from the φ(1.02)
meson – a value somewhat larger than our estimate of
mv

0 = 0.9 ± 0.1 GeV. For the scalar mesons, the compar-
ison with experiment is even more indirect. When com-
paring with our results, from [14] the appropriate states
would be the a0(0.98) and a0(1.45), since our neglect of
disconnected correlations effectively results in an isovec-
tor operator. However, as recently discussed in [15], these
states probably have a complicated structure being mainly
(qq)3̄(q̄q̄)3 in S-waves at short distances, with some qq̄ in
P-waves. But further out these rearrange into (qq̄)1(qq̄)1
and finally emerge as meson-meson states.

In fact this complication arises also in lattice calcula-
tions, since the present lattice parameters predict a pseu-
do-scalar meson (the “pion”) with mass amps = 0.564 –
see Table 8 in [3]. This means that in Fig. 2 a cut in the
T -direction can intersect four light-quark propagators –
a state that can be interpreted as the exchange of two
pseudo-scalar mesons. In the above scalar meson the qq̄
are in a relative P-wave, so that it can couple to a two-
meson state, where the mesons are in a relative S-wave.
On the lattice such a two pseudo-scalar meson state would
simply have a mass of 2amps =1.13. This means that the
scalar meson – calculated directly as a qq̄ state with mass
ams

0 = 1.18 ± 0.08 in [7] – is essentially degenerate with
the two pseudo-scalar meson state and suggests that our
estimate of, say, ams

0,2LY = 1.09 ± 0.07 also contains this
two-meson effect. It should be added that this problem
does not arise for the vector meson, since there the qq̄ are
in a relative S-wave, so that the corresponding two-meson
state has a relative P-wave leading to an energy consid-
erably larger than 2amps = 1.13. This means that the
structure of the vector meson generated here is expected
to be mainly qq̄ with little mixing with the two-meson
state.

4.3.3 YS and LYS

The above considers directly the charge density. However,
a similar analysis can be carried out on the y1(r), when the
charge density is expressed in the separable form x11(r) =
y1(r)y1(r). Since the single form fits ES, GS, LES and LGS
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are given directly by their non-separable counterparts, as
is clear by the relationships aF

0 ≈ (aFS
0 )2, rES

0 ≈ 2rE0 and
rGS
0 ≈ √

2rG0 , they would add nothing new. The same is
essentially true of the 2ES, 2GS, 2LES and 2LGS fits in
Table 7, since the values of the rFS/LFS

0 and r2FS/2LFS
0 are

very similar. However, if the y1(r) are thought of as one of
the two propagators in Fig. 2, then it is now appropriate to
identify y1(r) with the YS and LYS forms. From Table 7
we get that m0,2LYS = 0.49 ± 0.02 and m1,2LYS = 0.58 ±
0.02 GeV.

This value of m0,2LYS is consistent with the earlier
m0,2LE = 0.51 ± 0.03 GeV and supports the identification
that these two very different ways of analysing the data
are indeed extracting the propagator of the same “par-
ticle” and, as said above, it is tempting to identify this
“particle” with a constituent quark. Since the density in
the 2LE case can be expressed schematically in terms of
two Yukawas (Yi) as Y0Y0 + Y1Y1 compared with the cor-
responding expression in the 2LYS case (Y ′

0 + Y ′
1)2, it is

really only justified to compare the dominant terms Y0Y0
and (Y ′

0)2.
In Table 8 we show the corresponding fits to the matter

distribution giving m0,2LYS = 0.63 ± 0.05 and m1,2LYS =
1.0±0.2 GeV. If these are now interpreted as the masses of
constituent quarks, then scalar mesons constructed from
two such non-interacting quarks – as in the naive quark
model – would predict ms

0 = 1.26 ± 0.10 and ms
1 = 2.0 ±

0.4 GeV. The latter is consistent with ms
1(2LY) = 2.0 ±

0.3 GeV discussed earlier. However, the value of ms
0 is dis-

tinctly smaller than the earlierms
0(2LY) = 1.53±0.09 GeV

and supports the point of view that scalar mesons cannot
be described by the naive constituent quark model.

4.3.4 GS and LGS

The above Yukawa and exponential forms arise naturally
in quantum field theory, whereas gaussians do not. How-
ever, when – as in [2] – an attempt is made to understand
the densities in terms of solutions of the Dirac equation, it
would be difficult to reconcile an exponential or Yukawa
asymptotic tail with the usual form of linearly rising con-
fining potential cr. When such a potential is introduced as
a scalar potential, the solutions of the Dirac equation are
asymptotically gaussian. This is most easily seen when –
in the notation of [16] – the coupled Dirac equations for
large r are written as{

G′(r) = m(r)F (r)

F ′(r) = m(r)G(r)
, giving G′′ − (cr)2G = 0, (18)

where m(r) = m + cr → cr. The functions G and F are,
therefore, seen to decay asymptotically as gaussians. Of
course, the concept of a linearly rising confining poten-
tial does not hold for sufficiently large r, since eventually
this will be quenched by the creation of qq̄ pairs. Unfortu-
nately, the actual demonstration of this unavoidable effect
has yet to be achieved in a completely convincing manner
for full QCD. However, the indications are that this will

only occur for some value of r greater than about 1.2 fm,
which – with the present lattice spacing of a ≈ 0.14 fm –
corresponds to a distance of almost 10a. Therefore, in the
range of interest here (4a < r < 7a) the linearly rising po-
tential is still expected to be important and its repulsion
could well suppress the density from being an exponential
decay to more like a gaussian decay.

Support for a Dirac equation description is also given
by our result that the charge and matter distributions
are different – a feature not easy to understand in a non-
relativistic approach. In the notation of (18) the charge
and matter distributions can be expressed as

xαβ
c (r) = Gα(r)Gβ(r) + Fα(r)Fβ(r) and

xαβ
m (r) = Gα(r)Gβ(r) − Fα(r)Fβ(r),

respectively. Attempts are now underway to study to what
extent the above distributions can indeed be interpreted
in terms of solutions (G,F ) of the Dirac equation [17].

Our use, in Sect. 3.2, of the separable approximation
when analysing the data was suggested by the form of
the three-point correlation function C3. The above inter-
pretation of the data in terms of Dirac wavefunctions is
consistent with this – namely – for small r the lattice data
gives x11

c ≈ x11
m . This implies thatG1(r) 	 F1(r) and both

densities are approximately described by G1(r)G1(r) – a
separable form. On the other hand, at the largest val-
ues of r studied here, we get x11

c ≈ 3x11
m – implying that

G2
1(r) ≈ 2F 2

1 (r) and so destroying the simple separability
of the densities.

4.4 More on the charge sum rule

Comparing the values of the sum rule in Table 4, where
the estimates are made by directly summing over all the
lattice as in Sect. 3.3, and the values of IF in Table 5,
where they are made by summing the separate contribu-
tions from each vertex (x, y, z), we see that the latter in the
2LY case can be as large as 1.7(3) – a number that seems
to be slightly larger than the direct sum of about 1.4(1). Of
course, within the quoted error bars these two estimates
agree. Even so there are reasons – to be discussed below
– why exact agreement is not necessary. Firstly, it must
be remembered that the direct estimate includes contri-
butions from the whole lattice i.e. upto values of r = 8

√
3,

whereas the data for a given r is based on only 18 val-
ues extending upto almost r = 6. More explicitly, the fits
using (12) and (13) are to data with r < 6 – the largest be-
ing x = 5, y = 3, z = 0. In fact, a more correct statement
would be that the fits are mainly dictated by the data for
r ≤ 4, with the remaining data, which have relatively large
error bars, playing more of a supportive than a decisive
role. Therefore, there is no guarantee that the expressions
based on (12) and (13) are a good representation beyond
r ≈ 4.

To test the importance of the density contributions
from large values of r, the summation over r in (15) is
carried out explicitly but truncated in two ways by intro-
ducing either a cubic cut-off (C) or a spherical cut-off (S).
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Table 10. Estimates of the charge sum rule from the k = 0
component of (15). The r summation is truncated in two ways
– cubic(C) cut-off, where |x|, |y| and |z| are all ≤ rc and the
spherical(S) cut-off, where only values of x, y and z with x2 +
y2 + z2 ≤ r2

c are kept in the summation. The columns labelled
I2E and I2Y are the integrals from 0 to rc of the functions
2E and 2Y in Table 5. The row labelled None means the r
summation is over the whole L3 lattice

2LE+data 2E 2LY+data 2Y
rc C S I2E C S I2Y

3 0.95 0.62 0.63 0.95 0.62 0.58
4 1.20 0.87 0.90 1.20 0.87 0.85
5 1.37 1.11 1.10 1.38 1.11 1.06
6 1.49 1.30 1.23 1.51 1.30 1.21
7 1.58 1.42 1.31 1.61 1.42 1.37
None 1.62 1.62 1.6(3) 1.65 1.65 1.6(5)

In the cubic case, the x, y and z sums are each limited
to the range −rcto + rc, where rc takes on values rang-
ing from 3 to 7. The first values of rc cover much of the
range over which (12) and (13) were used to fit the data,
whereas by going to rc = 7 additional points are included
that are outside this range. In the spherical cut-off, only
values of x, y and z with x2 + y2 + z2 ≤ r2c are kept in
the summation. The outcome as seen in Table 10 shows
several points:

1) There is little difference between the use of two lattice
exponentials (2LE) versus two lattice Yukawas (2LY).
This shows that, for the sum rule, the two forms are
not only very similar at those values of (x, y, z) for
which there exists lattice data but also at all other
points on the lattice. Of course, when the expressions
in (12) and (13) are used over the whole lattice, there
is no need to resort to the explicit summation in (16),
since the result (17) is known. However, it did serve as
a numerical check.

2) The effect of including – where ever possible from Ta-
ble 2 – the 18 actual lattice data points instead of
the fitted forms has the minor effect of decreasing the
sums by about 0.02. This is yet another reflection that
the fitted forms are a good representation of the lat-
tice data. Of course, these 18 points are only a small
fraction of the total data needed in (15). Fortunately,
about one half of the sum rule comes from contribu-
tions within a volume where r ≤ 3 and these have all
been measured directly.

3) The effect of using the Cubic (C)- versus the Spherical
(S)-cutoff is large, with the latter being consistently
about 0.2 smaller. This is natural, since for the same
value of rc the C-cutoff embraces more lattice points.

4) However, the most significant point is that the sums
continue to increase significantly as rc goes beyond the
range where the lattice data is measured – with the
value at rc = 5 for the S(C)-cutoff being about 1.1(1.4)
increasing to 1.4(1.6) at rc = 7.

Table 11. This is a continuation of Table 10 for the spherical
cutoff case (S) containing the available data. Here single expo-
nential (E), Yukawa (Y) and gaussians (G) tails are included
for r > rc. The parameters of these tails are obtained from data
with r ≥ 3. The combined functions (2LE+E, 2LY+Y, 2LE+G
and 2LY+G) are integrated using the cubic cutoff with r = 7

rc 2LE+E 2LY+Y 2LE+G 2LY+G

3 1.42 1.46 1.30 1.30
4 1.40 1.45 1.28 1.28
5 1.41 1.46 1.29 1.29

The outcome is that, from the region r ≤ 4, where the
fits in (12) and (13) are most reliable, the contribution to
the sum rule is about 1.2 – 1.4, which already is consis-
tent with the direct summation estimate in Table 4. This,
therefore, means that there is a significant contribution
of about 0.4 – 0.5 coming from values of r greater than
4. In detail, a contribution of about 0.2 comes from the
range 4 < r < 5 and about 0.1 from the range 5 < r < 6,
where the fits seem to be supported by the data. The re-
maining discrepancy of almost 0.2 then comes from the
periphery with r ≥ 6, where there is no data to check the
meaningfulness of the fits.

It, therefore, seems that the direct sum rule in Table 4
could well be slightly smaller that the explicit sum in (15).
This possible difference can be interpreted in two ways:
The explicit sum is an overestimate or the direct sum is
an underestimate.

1) The fits using the expressions in (12) and (13) may in-
deed give a good fit to the data upto r ≈ 4, but are not
good estimates of the poor and missing data for r > 4.
To test this, the lattice forms 2LE and 2LY are used
upto r = rc and the single non-lattice forms based on
2E, 2Y and 2G in Table 5 are used for r > rc. The
outcome is shown in Table 11. As expected the combi-
nations 2LE+E and 2LY+Y give results in the range
1.4–1.5, which are close to those of the spherical cutoff
with rc = 7 in Table 10. On the other hand, the combi-
nations 2LE+G and 2LY+G – containing the gaussian
tail – give a result of ≈ 1.3, which is noticeably smaller
than the 2LE+E or 2LY+Y numbers. Furthermore,
all of these combinations result in sum rules that are
smaller than the rc = 7 cubic cutoff values of almost
1.7.

2) The second – and less likely – interpretation is that the
fits with Yukawa and exponential forms do indeed give
a good estimate of the poor and missing data for r > 4.
This would mean that the values of the sum rules in
Table 4 are an underestimate and that the measured
contributions there from r > 4 are too small. An ex-
ample of this will be seen later in Table 12 of the next
subsection. There the three-point correlation function
for r = 5 is consistent with that for (x = 3, y = 4) for
T ≤ 6 – but with errors that are twice as big. How-
ever, for T > 6 – the T range necessary for extracting
densities – the signals from the two cases differ greatly,
with those for r = 5 simply disappearing. Possibly sim-
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Table 12. Check on the rotation invariance of R(r) =
〈C3,F1F1(T, r)〉/〈C2,F1F1(T )〉 for r = 3 versus x = 2, y = 2, z =
1 and r = 5 versus x = 3, y = 4. All entries should be multi-
plied by 10−4

T R(r = 3) R(2, 2, 1) R(r = 5) R(3, 4)

4 23.0(4) 11.6(2) 1.2(4) 1.2(2)
5 24.4(4) 13.4(3) 1.7(4) 1.6(2)
6 25.4(6) 15.3(4) 2.0(5) 2.2(3)
7 25.7(7) 16.2(4) 1.1(6) 2.8(3)
8 26.2(1.1) 17.7(0.7) 0.8(9) 3.9(5)
9 26.8(1.5) 17.4(0.9) 1.0(1.2) 5.0(7)
10 28.8(2.7) 17.4(1.5) 2.9(2.2) 7.0(1.3)

ilar underestimates could occur for larger values of r,
where the fits from (12) and (13) suggest a significant
contribution (≈ 0.3) to the sum rule should arise. How-
ever, this would be surprising since it is not usual for
there to be such systematic trends. Normally in such
cases, one would expect the results to fluctuate from
being too low for some values of r to being too high at
others. However, if the trend suggested by the r = 5
data were true then this would mean that the charge
sum rule could be larger than that measured directly –
possibly upto about 1.7. Unfortunately, to now get the
value of unity expected in the continuum limit, would
then require a vertex renormalisation factor of about
1/1.7 ≈ 0.6 – a number significantly smaller than the
estimates in [11].

The first interpretation has two nice features. Firstly,
with a charge sum rule of about 1.3, the required vertex
renormalisation factor to ensure unity in the continuum
would be about 0.8 – a value more in line with the es-
timates in [11]. Secondly, when – as in [2] and discussed
above – an attempt is made to understand the charge
density in terms of solutions of the Dirac equation, expo-
nential and Yukawa forms do not arise naturally, whereas
gaussian forms do as illustrated in (18).

For the matter sum rule we saw in Table 4 that 0.9(1)
was a reasonable compromise. The predictions using the
algebraic fits are shown as IF in Table 6 and are seen to
have much larger error bars than their charge counter-
parts. All that can be said is that the IF’s are – within
these large uncertainties – consistent with the direct mea-
surement of 0.9(1).

The conclusion from this section is not definite. If the
asymptotic form of the density is indeed exponential or
Yukawa, then the charge sum rule is 1.4 to 1.5. However,
it is not possible to rule out an asymptotic form that is
gaussian. In that case the charge sum rule could be less
than 1.3.

4.5 Rotational invariance

Since off-axis points are considered, in principle it should
be possible to check rotational invariance. In particular,

Table 13. Lack of rotation invariance in the lattice Yukawa
and exponential forms in (12) and (13) for r = 3 versus
(x, y, z) = (2, 2, 1) and r = 5 versus (x, y) = (3, 4)

Case r = 3 (2, 2, 1) Ratio

2LY(Table 5) 0.002893 0.002566 0.89
2LE(Table 5) 0.002893 0.002573 0.89

r = 5 (3, 4) Ratio
2LY(Table 5) 0.000709 0.000653 0.92
2LE(Table 5) 0.000706 0.000651 0.92

comparisons between the on-axis point r = 5 and the off-
axis point (x, y) = (3, 4) data and also the r = 3 and
(x, y, z) = (2, 2, 1) data are of special interest. In Ta-
ble 12 the ratios 〈C3,F1F1(T, r)〉/〈C2,F1F1(T )〉 are shown
for the dominant charge correlation. This table shows sev-
eral points:

1) The r = 3 and (2, 2, 1) data both have good signals
for all values of T . This shows clearly that rotational
invariance is violated with x11

F1F1
(r = 3) being almost

twice x11
F1F1

(2, 2, 1). The reason for this lack of rota-
tional invariance in such an extreme off-axis case could
be due to the presence of the single z = 1 step in
(2, 2, 1). A similar effect can be seen in Fig. 3 for the
(1, 1, 1) data which is also lower than the general trend.
For less extreme cases such as (2, 1), rotational invari-
ance seems to be better satisfied.

2) The r = 5 signal disappears at T = 7 - rendering it
useless to extract the density, since this requires reli-
able data for T > 7. This negative result is anyhow of
interest, because in [2] r = 5 was the largest value of r
analysed and it suggested that the charge density was
considerably smaller than would be expected from a
simple exponential dependence. This is no longer the
case.

3) The (x, y) = (3, 4) signal is good for all T . This im-
provement over the r = 5 case is presumably due to
the fact that each off-axis correlation is measured 24
times compared with the 6 on-axis measurements.

4) For T < 7, the two sets of data are in agreement, as
would be expected if rotational invariance had been
achieved. However for T ≥ 7, the C3(r = 5) signal
essentially disappears.

If the lattice Yukawa and exponential forms in Sect. 4
are used to estimate the rotational invariance, we get the
results in Table 13. Both forms give the same results well
within 1%. However, for the two cases considered involving
directly the lattice data – r = 3 versus (2, 2, 1) and r =
5 versus (3, 4) – the off-axis values are about 10% less
than the corresponding on-axis value. For r = 3 versus
(2, 2, 1) this difference is considerably smaller than the
actual lattice data requires. On the other hand, for r = 5
versus (3, 4) the reverse could be true with the difference
being much larger than is suggested by the small T values
in Table 12.

It should be added that this study of the (2, 2, 1) case
was only carried out after the bulk of this work was com-
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pleted. In particular, the (2,2,1) data was not included
in the fitting that led to the exponential, Yukawa and
Gaussian parameters in Tables 5 to 8. However, its direct
inclusion did not result in values of the ai and ri that
were outside of the error bars given in Tables 5 to 8, even-
though each χ2/ndof did increase by about 0.3 – 0.4. A
more realistic way to treat this data is to combine the
r = 3 data with that for (2,2,1) using the relative weights
of 6 to 24 – the number of equivalent possibilities for the
two cases. When this weighting is also used for the fitting
functions, the χ2/ndof decreases slightly from the values
in Tables 5 to 8. However, again the final values of the
ai and ri are unchanged within the errors quoted. This
suggests that the overall fits are sufficiently stable that
the effect of any particular case may lead to a large χ2

contribution for that case but still leave the fit essentially
unchanged. It should be noted that the r = 3 and (2, 2, 1)
charge data only differ by about two standard deviations,
so that the above problem could even evaporate if more
gauge configurations were used.

5 Conclusion

In this paper charge (vector) and matter (scalar) radial
distributions have been measured on a lattice for the
heavy-light meson (Qq̄), where Q is a static quark and q̄
has a mass approximately that of the strange quark. The
charge distribution could be determined reasonably well
upto an interquark distance of about 6 lattice spacings
i.e. ≈ 0.8 fm. In comparison, matter distribution mea-
surements could only be carried out upto about 4 lattice
spacings i.e. ≈ 0.6 fm. The drop-off of the charge distri-
bution can be well described by the exchange of a vector
meson of mass ≈ 1 GeV. On the other hand, the drop-off
of the matter distribution is described by the exchange of
an scalar meson of mass ≈ 1.5 GeV.

In the conclusion of [2] several refinements and exten-
sions to that pilot calculation of charge and matter dis-
tributions were listed. Here we have carried out a few of
these:

1) Probably the most important “refinement” is the re-
placement of the quenched approximation by the use of
dynamical fermions. However, as seen in Fig. 3, we find
that the two appear to be indistinguishable within the
accuracy of the present work. In [9] and [10] it was sug-
gested that in the matter distribution there could be a
difference due to the presence of disconnected quark-
loop contributions. The fact that this is not seen here
could be due to our use of sea quarks that have a mass
about that of the strange quark mass.

2) Radial correlations at off-axis points are now mea-
sured. This meant that the number of data points ac-
cessible before the noise takes over is much larger –
going from about 6 to 18. This enables us to achieve
better algebraic fits to the data. However, one of our
hopes, to see rotational invariance by comparing the
data for r = 5 and (3, 4) was only partially successful
– see Table 12.

3) The lattice spacing is now smaller – 0.14 fm compared
with the earlier 0.17 fm. Also the number of gauge
configurations is larger – 78 versus 20 earlier.

However, the list in [2] contained other points not
touched here:

1) So far we have only extracted S-wave correlations. We
still need to measure the P1/2, P3/2, D3/2, D5/2, . . .
densities corresponding to the energies extracted in [5].
Also for a given orbital angular momentum, do these
correlations show the degeneracy predicted in [18]?

2) The measurement of correlations in the baryonic and
(Q2q̄2) systems. Are these similar to those in the (Qq̄)
system – as is the case when comparing correlations
in few-nucleon systems? If this is so, then it would
encourage phenomenological approaches such as that
mentioned above utilizing the Dirac equation.

3) As with all lattice calculations, there is the need to
check the continuum limit by using finer and larger
lattices. The former has, to some extent, been checked
by the comparison between our earlier work in [2] with
a = 0.17 fm and this study with a = 0.14 fm. There, as
seen in Fig. 3, the two sets of results agree after scaling.
However, the two calculations also differ by their use of
quenched versus unquenched gauge configurations. A
more correct comparison would involve the use of the
same type of configurations – quenched or unquenched.
Even so, our present comparison – in spite of its failings
– is encouraging.

4) So far we have dealt with light quarks (valence and sea)
that have the isospin form of u, d quarks but with a
mass about that of the strange quark and heavy quarks
that are static. The use of such quark masses means
that the nearest physical meson with which we can
possibly compare our calculations is the Bs(5.37 GeV).
However, for a more realistic comparison we should
eventually have a heavy quark with mass about 5 GeV
and u, d quarks with their correct mass.

5) In this work we have only probed the charge and mat-
ter distributions using the γ4 and unity probes. How-
ever, other probes are possible such as: i) The pseudo-
vector operator (γµγ5) needed for the B∗Bπ coupling
– see [19]; ii) Probes to study the color structure of the
gluon fields and possible qq̄ condensates surrounding
the Qq̄ system.

This study is now at the stage where we have the ener-
gies and the corresponding charge and matter radial dis-
tributions for the ground and first excited S-wave states.
In the future we hope to have these quantities for the other
partial waves in [5]. These results can possibly be utilized
in at least two ways:

1) When, for example, calculating electromagnetic transi-
tions between different Qq̄ states the form of the tran-
sition matrix elements could be guided by the above
radial distributions.

2) As discussed in the Introduction – and also as partial
motivation for the separable method for analysing the
lattice data – the radial distributions could be inter-
preted in terms of wavefunctions. This would mean we
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are in the position of having some of the eigenvalues
and eigenfunctions of an Hamiltonian, whose form we
do not know. We are then at liberty to find this Hamil-
tonian to construct an effective theory. This effective
Hamiltonian could be, for example, of Schroedinger or
Dirac form with suitable interactions. As discussed in
Sect. 4.3, the latter form is probably more appropriate,
since the charge and matter distributions are different
– a feature not easy to understand in a non-relativistic
approach.

This study has shown that – using lattice techniques –
reliable estimates can be made not only of spectra but also
of wavefunction information. This is just the beginning –
with future studies expected to enlarge this information
and also to attempt interpretations outside of quantum
field theory.
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